Affiliation:
1. Precision Medicine and Healthcare Research Center Tsinghua‐Berkeley Shenzhen Institute (TBSI) Tsinghua University Shenzhen 518055 China
2. Institute of Materials Research Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China
3. Currently at Department of Biomedical Engineering City University of Hong Kong Hong Kong 999077 China
4. Department of Biomedical Engineering School of Medicine Tsinghua University Beijing 100084 China
5. National Engineering Research Center for Beijing Biochip Technology Beijing 102206 China
Abstract
AbstractLaser‐inducing provides a cost‐effective, easily‐manufacturable, and environment‐friendly approach to directly transfer carbon‐rich polymers into graphene materials, which attracts attention from various fields, such as sensors, electrocatalysts, micro‐supercapacitors, etc. Laser‐induced graphene (LIG) benefits from the intrinsic properties of graphene, for example, high conductivity, high electroactivity, and high specific area. In this work the potential of laser‐induced graphene in constructing an enzymatic electrochemical biosensing interface is evaluated. Here, a laminar‐structured laser‐induced graphene material is fabricated by laser engraving with polyimide. After deposition of the electron mediator ferrocene, a conjugated enzyme complex of bovine serum albumin‐glucose oxidase (BSA‐GOx) is modified on the laser‐induced graphene by cross‐linking. The fabricated glucose oxidase/ferrocene/LIG (GOx/Fc/LIG) biosensor achieves high sensitivity of 11.3 µA mM−1 cm−2), wide linear range of 0–11 mM, and low detection of limit of 0.04 µM. The LIG electrodes exhibit high flexibility with bending angle as high as 60° without observed conductivity change. The repeatability and robustness of the developed LIG biosensor in detection of real serum samples empower it with great potential in clinical implementation in the future.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Subject
Mechanical Engineering,Mechanics of Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献