Light‐Induced Thin‐Film Transfer Processes Based on Phase Transition of GeSbTe and ITO Sacrificial Layers

Author:

Park Sang Yoon1,Kim Min Kyoo1,Kim Jeong Hyeon1,Lee Han Eol1ORCID

Affiliation:

1. Division of Advanced Materials Engineering Jeonbuk National University 567 Baekje‐daero, Deokjin‐gu Jeonju‐si Jeollabuk‐do 54896 Republic of Korea

Abstract

AbstractIn the upcoming ubiquitous era, wearable/flexible electronics are spotlighted to get various types of numerous information in real time. Several researchers have investigated flexible materials, and developed diverse thin‐film transfer methods. However, there are some limitations of the intrinsic material unstabilities, and low production yield. Here, light‐induced thin‐film transfer methods are reported by using new transfer mechanism of phase transition in sacrificial materials. Lift‐off conditions with high‐energy laser are delicately optimized by theoretical calculations and experiments to minimize mechanical/thermal damages of the upper thin‐film devices. The selected sacrificial materials of GeSbTe (GST) and indium tin oxide (ITO) with the 300 nm thickness are delaminated from a transparent and rigid glass substrate by irradiating the excimer laser to the surface of the sacrificial layer. The laser‐based exfoliation mechanism of GST and ITO films are comprehended by various material surface analyses. Eventually, flexible oxide thin‐film transistors (TFTs) are successfully demonstrated through light‐induced exfoliation process, showing the usability of the developed transfer technique to future practical applications.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3