Field‐Free Switching and Enhanced Electrical Detection of Ferrimagnetic Insulators Through an Intermediate Ultrathin Ferromagnetic Metal Layer

Author:

Ke Jintao12ORCID,Bi Linzhu12,Zhu Zhaozhao123,Bai He45,Li Guansong12,Hu Chaoqun6,Wang Pengju12,Zhang Ying123,Cai Jian‐Wang12ORCID

Affiliation:

1. Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China

2. School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 China

3. Songshan Lake Materials Laboratory Dongguan Guangdong 523808 China

4. Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China

5. Spallation Neutron Source Science Center Dongguan 523803 China

6. Institute of Advanced Materials Beijing Normal University Beijing 100875 China

Abstract

AbstractPerpendicularly magnetized ferrimagnetic insulators offer great potential for the development of fast and energy‐efficient spintronic devices. However, a major challenge for these devices is the requirement of an auxiliary magnetic field to achieve spin‐orbit torque (SOT)‐driven magnetization switching, along with the extremely small electric read‐out signal from the adjacent heavy metal layer. In this work, an approach by introducing an ultrathin Co layer primarily with in‐plane magnetization at the interface of the Tm3Fe5O12/Pt bilayers, which enables field‐free deterministic switching of the perpendicular Tm3Fe5O12 layer is demonstrated. Meanwhile, it is observed that a large anomalous Hall resistance readout signal from the coupling‐induced perpendicular component of the interfacial Co, which is nearly two orders of magnitude larger than that observed in Tm3Fe5O12/Pt bilayers. The crucial role played by the Co layer in modifying the SOT is elucidated. This research represents a significant step toward the practical implementation of ferrimagnetic insulator devices.

Funder

Postdoctoral Research Foundation of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3