Low‐Temperature Water‐Assisted Oxidation of Sponge‐Like Zn Nanostructures for Environmental and Energy Harvesting Applications

Author:

Laurenti Marco1,Fontana Marco1,Stassi Stefano1ORCID,Sacco Adriano2,Scalia Alberto1,Bianco Stefano1,Pirri Candido F.12,Lamberti Andrea12

Affiliation:

1. Department of Applied Science and Technology Politecnico di Torino C.so Duca degli Abruzzi 24 Torino 10129 Italy

2. Center for Sustainable Future Technologies @Polito Istituto Italiano di Tecnologia Via Livorno, 60 Torino 10144 Italy

Abstract

AbstractIn this work, the oxidation of sponge‐like nanostructured Zn films exploiting their interaction with water in liquid and vapor phases is investigated. By simply exposing the sputtered porous metal layers to a water vapor atmosphere or incubating them in water at different temperatures, the full conversion to ZnO is obtained. Depending on the kind of treatment, the oxidized ZnO layers exhibit different morphologies and physico‐chemical properties. When in combination with low heating of the surface, a better crystallinity and the growth of hexagonal nanocrystals (nanoprisms and nanoflowers) from the nanobranched Zn structure is observed, preserving the sponge‐like morphology of the starting material. Good photocatalytic activities for the degradation of an organic dye are measured under simulated sunlight irradiation. The piezoelectric and semiconducting response of the oxidized ZnO layers is also examined, revealing appealing performance in both cases and envisaging their use as nanogenerators and photoanode material in dye‐sensitized solar cells. The multifunctional properties of the oxidized ZnO film are discussed in terms of the selected water oxidation approach that tune the corresponding morphology and crystallinity. The low‐temperature oxidation approaches here proposed allow the fabrication of flexible semiconductive ZnO films highly desirable in different fields of nanoelectronics.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3