Affiliation:
1. Department of Materials Science and Technology (MTP) of Polymers and Sustainable Polymer Chemistry (SPC) University of Twente Enschede 7522 NB The Netherlands
2. ThermoPlastic composites Research Center (TPRC) Palatijn Enschede 15 7521PN The Netherlands
3. Department of Engineering Technology (ET) University of Twente Enschede 7522 NB The Netherlands
Abstract
AbstractAdvanced high‐performance structural applications require the right materials in the right place and suitable interface engineering. However, poor adhesion in harsh environmental conditions frequently challenge material interfaces. An example is the moisture sensitivity of titanium‐poly ether ketone ketone (PEKK) interfaces. Here, this work offers a high‐performance composite adhesive system, which combines strong adhesion and high interfacial toughness, particularly when used in metal‐polymer bonding. This system includes aminopropyl triethoxy silane (APTES)–polydopamine (SiPDA) layers, which can be formed on the titanium surface before the joining process with carbon fiber‐reinforced PEKK (C/PEKK). Adhesion between PEKK and titanium is evaluated before and after hot/wet conditioning using mandrel peel tests. This work discovers that applying thin SiPDA layers not only results in a remarkable rise in the interfacial fracture toughness but also provides durable bond stability after hot/wet conditioning. These findings indicate that polydopamine‐based coatings show great potential to achieve stable interfaces for the next generation of high‐performance metal‐polymer hybrid materials.
Subject
Mechanical Engineering,Mechanics of Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献