First‐Principle Study of Bandgap Engineering and Optical Properties of Monolayer WSe2 in Second Near‐Infrared Windows

Author:

Zhao Ruoli1ORCID,Liu Ling2,Pei Jiahui1,Liu Changlong1,Liu Tianyu13,Zhang Xiao‐Dong12

Affiliation:

1. Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology School of Sciences Tianjin University Tianjin 300350 China

2. Tianjin Key Laboratory of Brain Science and Neural Engineering Academy of Medical Engineering and Translational Medicine Tianjin University Tianjin 300072 China

3. Center for Joint Quantum Studies School of Science Tianjin University Tianjin 300350 China

Abstract

AbstractFluorescence imaging in the second near‐infrared II (NIR‐II) window is opening up new possibilities in bioimaging due to its low scattering rate within the tissue. The integration of 2D materials with NIR‐II fluorescence will enable the development of multifunctional imaging probes. However, there are very few 2D materials that can fluoresce in the NIR‐II range. Monolayer WSe2 is a potential 2D material, but its photoluminescence (PL) around 790 nm is still far from the NIR‐II range due to its bandgap of 1.54 eV. In this study, it is investigated the electronic structures, dielectric functions, and PL spectra for Te, I, and Cr‐doped monolayer WSe2, as well as W and S vacant monolayer WSe2. Most of the defected monolayer WSe2 remain semiconductors, except for a few configurations exhibiting metallic properties after making vacancies. Among the monolayer WSe2 under investigation, the Cr‐doped WSe2 performs the best, exhibiting a strong PL peak in NIR‐II with a decreased bandgap around 1.0 eV. As increasing Cr concentration, the peak shifts further toward the red end of the spectrum due to an enhancement of p–d transition. The results provide a useful guideline for material synthesis applied in NIR‐II bioimaging and other biophysics.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3