Affiliation:
1. School of Sciences Henan Agricultural University Zhengzhou 450002 P. R. China
2. Industrial Technology Research Institute Henan Mechanical and Electrical Vocational College Zhengzhou 451191 P. R. China
3. Key Laboratory of Optoelectronic Detection Materials and Devices of Zhejiang Province Ningbo University Ningbo 315211 P. R. China
4. School of Physics and State Key Laboratory of Crystal Materials Shandong University Jinan Shandong 250100 P. R. China
Abstract
AbstractElectrocatalysts play key roles in improving the performance of lithium sulfur (Li‐S) batteries. Here, the electrocatalytic activity of different CoSe2 surfaces for the polysulfide redox reactions in Li‐S batteries, by means of first‐principle calculations is considered. The authors demonstrate that there are obvious differences in surface energy (0.7–2.34 J m−2), adsorption energy for lithium polysulfides (LiPSs) (1.2–3.5 eV), Gibbs free energy of sulfur reduction reaction (SRR) (0.37–1.16 eV), and Li2S decomposition barrier (0.15–0.94 eV) among different CoSe2 surfaces, and thus lead to the different electrocatalytic activity for different CoSe2 surface. The stoichiometric CoSe2 surface with high surface energy, such as the (001) surface, tends to have stronger adsorption energy and larger SRR Gibbs free energy for LiPSs. The surface electron states are mainly dominated by p–d hybridization orbitals and the p‐band center is vital for the surface electrocatalytic properties. Such surface‐dependent mechanism may shed light on the design of sulfur host materials for high‐performance Li‐S batteries.
Funder
National Natural Science Foundation of China
Henan Agricultural University
Subject
Mechanical Engineering,Mechanics of Materials
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献