Advancing SERS Diagnostics in COVID‐19 with Rapid, Accurate, and Label‐Free Viral Load Monitoring in Clinical Specimens via SFNet Enhancement

Author:

Yang Yanjun1ORCID,Li Hao2,Jones Les3,Murray Jackelyn3,Naikare Hemant34,Mosley Yung‐Yi C.34,Spikes Teddy34,Hülck Sebastian5,Tripp Ralph A.3,Ai Bin2,Zhao Yiping6

Affiliation:

1. School of Electrical and Computer Engineering College of Engineering The University of Georgia Athens GA 30602 USA

2. School of Microelectronics and Communication Engineering Chongqing Key Laboratory of Bio‐Perception & Intelligent Information Processing Chongqing University Chongqing 400044 P. R. China

3. Department of Infectious Diseases College of Veterinary Medicine The University of Georgia Athens GA 30602 USA

4. Tifton Veterinary Diagnostic and Investigational Laboratory The University of Georgia Athens GA 30602 USA

5. Tec5USA Inc. Plainview NY 11803 USA

6. Department of Physics and Astronomy The University of Georgia Athens GA 30602 USA

Abstract

AbstractThis study presents an integrated approach combining surface‐enhanced Raman spectroscopy (SERS) with a specialized deep learning algorithm, SFNet, to offer a rapid, accurate, and label‐free alternative for COVID‐19 diagnosis and viral load quantification. The SiO2‐coated silver nanorod arrays are employed as the SERS substrates, fabricated using a reliable and effective glancing angle deposition technique. A dataset of 4800 SERS spectra from 120 positive and 120 negative inactivated clinical human nasopharyngeal swabs are collected directly on the SERS substrates without any labels. A SFNet algorithm is tailored to adapt to the unique spectral features inherent to SERS data, achieving a test accuracy of 98.5% and a blind test accuracy of 99.04%. Moreover, an optimized SFNet algorithm unveils the capability of estimating SARS‐CoV‐2 viral loads, accurately predicting the cycle threshold values (Ct values) of the three vital gene fragments with a root mean square error (RMSE) of 1.627 (1.3 for blind test). The methodology is substantiated using actual clinical specimens and completed in <15 min, thereby strengthening its real‐world point‐of‐care applicability. This rapid and precise yet label‐free modality competes favorably with classical reverse‐transcription real‐time polymerase chain reaction (RT‐PCR) and marks an advancement in SERS‐based sensor algorithms.

Funder

National Natural Science Foundation of China

National Institute of Food and Agriculture

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3