From Surfactants to Viscoelastic Capsules

Author:

De Angelis Gaia1,Gray Natascha1,Lutz‐Bueno Viviane2,Amstad Esther1ORCID

Affiliation:

1. Soft Materials Laboratory Institute of Materials École Polytechnique Fédérale de Lausanne (EPFL) CH‐1015 Lausanne Switzerland

2. Laboratory for Neutron Scattering and Imaging Paul Scherrer Institut PSI 5232 Villigen Switzerland

Abstract

AbstractMicrometer sized capsules are often used as single entities for the encapsulation and release of active ingredients, for example in food, cosmetics, and drug delivery. Important parameters that determine the stability of capsules and the release of reagents contained in them are the dimensions and composition of their shell. Most capsule shells are rather thick, thereby occupying a significant fraction of the capsule volume, or they are rigid, making the capsules fragile. This work introduces viscoelastic capsules with very thin shells of order 10 nm. Despite the thin nature of these shells, they are flexible, self‐healing, yet, for practical applications impermeable even to low molecular weight substances. These shells are formed by ionically crosslinking surfactants that are functionalized with catechol‐derivatives. This work investigates the influence of the number of chelators contained per surfactant and the crosslinking ion on the rheological properties of the membranes and relate it to the mechanical properties of the resulting capsules. This work demonstrates that these shells are impermeable to molecules as small as 340 Da even if loaded with cell culture media, indicating their potential for biomedical applications.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3