In‐Situ Growth of MgO@rGO Core‐Shell Structure via CO2 Thermal Reaction for Enhanced Photocatalytic Performance

Author:

Yue Xiaoju12,Han Lin12,Wang Shifeng13ORCID,Dun Linan2,Wang Jinnong12,Wang Yuanhao12,Du Chun1

Affiliation:

1. Key Laboratory of Plateau Oxygen and Living Environment of Tibet Autonomous Region College of Science Tibet University Lhasa 850000 China

2. Hoffmann Institute of Advanced Materials Shenzhen Polytechnic University Shenzhen 518055 China

3. Fujian Quanzhou Peninsula Materials Co., Ltd Quanzhou 362000 China

Abstract

AbstractDegradation of organic pollutants in wastewater is crucial for global environmental health. Semiconductor‐based photocatalytic technologies have received widespread attention due to their ability to directly utilize solar energy, produce no secondary pollution, and offer long‐lasting functionality. However, current photocatalyst preparation technologies face issues such as complex manufacturing processes, low efficiency, and the need for various additives. Therefore, this work proposes a simple and eco‐friendly method to in‐situ growth of reduced graphene oxide (rGO) onto magnesium oxide (MgO), forming a MgO@rGO core‐shell structured photocatalyst through CO2 thermal reaction process. After systematic study, the incorporation of rGO onto MgO core greatly extends the light absorption range from ultraviolet (UV) to visible wavelength, enabling substantially enhanced light capture and photoexcited carriers. Additionally, the core‐shell heterojunction with a built‐in electric field at the interface between MgO and rGO facilitates distinctly the separation and migration of the photogenerated charges. This structure‐induced synergistic effect boosts the photocatalytic performance of MgO@rGO by a factor of 1.7, 4.1, 41.8, and 6.4, compared with MgO (stripped), MgO (pure), rGO, and commercially used TiO2, respectively. This work provides a simple and effective strategy for designing advanced functional nanocomposites to address environmental problems.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tibet Autonomous Region

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3