Scalable Synthesis of Self‐Disinfecting Polycationic Coatings for Hospital Relevant Surfaces

Author:

Watts Samuel1,Gontsarik Mark1,Lassenberger Andrea1,Valentin Jules D. P.1,Wolfensberger Aline2,Brugger Silvio D.2,Zabara Mahsa34,Pronk Wouter3,Salentinig Stefan1ORCID

Affiliation:

1. Department of Chemistry University of Fribourg Chemin du Musée 9 Fribourg 1700 Switzerland

2. Department of Infectious Diseases and Hospital Epidemiology University Hospital Zurich University of Zurich Zurich 8091 Switzerland

3. Livinguard AG Gewerbestrasse 11 Cham 6330 Switzerland

4. T‐LVG Technologies Kantonsstrasse 45 Galgenen 8854 Switzerland

Abstract

AbstractThe prevention of microbial infections is a global challenge. Efficient antimicrobial coatings that rapidly kill microorganisms upon contact can help minimize their transmission. However, their scalable synthesis is challenging. This work demonstrates the scalable synthesis and characterization of self‐disinfecting nanofilms for the postmodification of hospital‐relevant surfaces. Their antimicrobial action is based on charge interactions between a supercharged cationic surface film and the negatively charged bacteria membrane. Photoinitiated bulk polymerization of an air‐dried [2‐(methacryloyloxy)ethyl]trimethylammonium chloride film on cotton (gowns), nitrile rubber (protective gloves), and glass surfaces (tables, screens) is used for their supercharging, and studied with streaming potential measurements. A 6 nm thick coating dominated by cationic quarternary amine groups is shown by a combination of spectroscopic imaging ellipsometry and X‐ray photoelectron spectroscopy. Antimicrobial in vitro evaluation of the coated surfaces demonstrates up to ≈4 log reductions in bacterial populations in less than 5 min. Confocal laser scanning microscopy and live‐dead staining confirm the surface‐induced killing of bacteria. The coating's range of compatible materials and its rapid bactericidal activity can combat the surface transmission of bacteria and may help to contain the spread of infectious diseases. Its synthesis in environmental conditions is promising for integration into industrial processes.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3