CoFe2O4@N‐CNH as Bifunctional Hybrid Catalysts for Rechargeable Zinc‐Air Batteries

Author:

Yadav Sudheer Kumar1,Deckenbach Daniel1,Yadav Sandeep1,Njel Christian2,Trouillet Vanessa2,Schneider Jörg J.1ORCID

Affiliation:

1. Fachbereich Chemie Eduard‐Zintl‐Institut für Anorganische und Physikalische Chemie Technische Universität Darmstadt Peter‐Grünberg‐Strasse 12 Darmstadt 64287 Germany

2. Institute for Applied Materials (IAM‐ESS) and Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 Eggenstein‐Leopoldshafen 76344 Germany

Abstract

AbstractImproving the efficiency of bifunctional electrocatalysts is a decisive challenge in the area of long‐lasting rechargeable zinc‐air batteries. Enhancing the catalysts' performance is crucial for advancing zinc‐air batteries. Transition‐metal oxides have emerged as promising non‐precious, noble‐metal‐free catalysts. Herein, a unique precursor directed approach is introduced for preparing a cobalt ferrite@nitrogen doped carbon nanohorns (CoFe2O4@N‐CNHs) nanohybrid catalyst in a single step annealing process involving stoichiometric amounts of single‐source cobalt and iron molecular precursors and carbon nanohorns (CNHs) under an argon/ammonia (Ar/NH3) atmosphere. This procedure enables a simultaneous CoFe2O4 ferrite synthesis and nitrogen functionalization of CNHs. The precious metal free nanohybrid CoFe2O4@N‐CNHs‐30% containing 30% of carbon presents an oxygen reduction reaction (ORR) half wave potential and onset potential comparable to the standard ORR catalyst 20% Pt/C. CoFe2O4@N‐CNHs‐30% also establishes superior oxygen evolution reaction (OER) performance with a low overpotential and a small Tafel slope than benchmark OER catalyst RuO2. Furthermore, the rechargeable zinc‐air battery with the CoFe2O4@N‐CNHs‐30% nanohybrid as air electrode demonstrates steadier and more durable charge–discharge cycles, and outstanding energy density relative to the state‐of‐the‐art 20% Pt/C‐RuO2 catalyst.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3