Permeability of Single‐Layer‐Free‐Standing Meshes at Varying Capillary Pressure via a Novel Method

Author:

Shattique Muhammad R.1ORCID,Giglio Roman2,Dede Ercan M.3,Narumanchi Sreekant4,Asheghi Mehdi5,Goodson Kenneth E.5,Palko James W.2ORCID

Affiliation:

1. Materials and Biomaterials Science and Engineering University of California Merced CA 95343 USA

2. Mechanical Engineering University of California Merced CA 95343 USA

3. Electronics Research Department Toyota Research Institute of North America Ann Arbor MI 48105 USA

4. National Renewable Energy Laboratory Golden CO 80401 USA

5. Mechanical Engineering Stanford University Stanford CA 94305 USA

Abstract

AbstractThe permeability of mesh wicks is important for various applications, including two‐phase heat transfer. However, the understanding of the permeability of single‐layer, free‐standing mesh wicks, with liquid–gas interfaces on both sides, is limited. A novel and simpler method is presented to determine the permeability of a free‐standing wick and apply it to a representative mesh. This method involves modifying the capillary pressure via elevation and simultaneously measuring the permeability to determine the permeability‐capillary pressure relationship. When applied to a copper mesh with plain weave having undergone surface cleaning, the permeability is found to decrease as capillary pressure for deionized water increases. A dimensional analysis is presented to generalize this data for other mesh sizes with similar weaves and fluids. The behavior of mesh in application is modeled, based on the integration of Darcy's law with an analytic function fit to measured data, and parametric studies are conducted to investigate the superficial velocity of liquids through the mesh under varying driving pressures, transport lengths, and liquid viscosity, based on the obtained capillary pressure–permeability relationship. This study provides valuable insights into the transport properties of mesh wicks, with potential applications in fields such as electronics cooling, electrochemical devices, and fluid purification technologies.

Funder

Advanced Research Projects Agency

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3