Design of a Novel Drug Delivery Nanosystem that Simultaneously Realizes Real‐Time Tracing and Drug Delivery Across the Blood–Brain Barrier

Author:

Wang Xiu1,Qin Lijing1,Song Baoqin1,Wu Mengru1,Liang Wanjun1ORCID

Affiliation:

1. School of Pharmaceutical Sciences & Institute of Materia Medica National Key Laboratory of Advanced Drug Delivery and Release Systems Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences) Key Lab for Rare & Uncommon Diseases of Shandong Province Shandong First Medical University & Shandong Academy of Medical Sciences Jinan Shandong 250117 China

Abstract

AbstractAcute encephalitis is a brain infection that can harm the nervous system if not recognized and treated promptly. However, the presence of the blood–brain barrier restricts therapeutic agent distribution from the bloodstream to the brain parenchyma, severely restricting effective therapy for this disease. Herein, a novel drug delivery system based on a macrophage (RAW 264.7 cells) artifactual diagnostic and therapeutic nanoparticles (IPD@RAW) drug‐loading approach is presented, which exploits RAW cells' ability to cross the blood–brain barrier and go toward inflammation, and efficiently realizes the targeted enrichment of diagnostic and therapeutic nanoparticles at the site of inflammation in the brain. This nano‐drug‐carrying technology can accurately depict the degree of inflammation in real time for an extended period due to the significant penetration depth and high signal‐to‐noise ratio of near‐infrared (NIR) imaging. Meanwhile, the modified polydopamine can trigger the controlled release of anti‐inflammatory drugs through photothermal conversion under NIR irradiation to reduce the expression of cellular inflammatory factors, such as TNF‐α, IL‐6, and IL‐1β, and alleviate the brain damage due to secretion of this inflammatory factor. As a result, this drug delivery system provides a reliable tool for overcoming the blood–brain barrier to achieve early diagnosis and treatment of acute encephalitis.

Funder

Natural Science Foundation of Shandong Province

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3