Affiliation:
1. Chimie ParisTech PSL Research University CNRS Institut de Recherche de Chimie Paris (IRCP) UMR8247, 11 rue P. et M. Curie Paris F‐75005 France
2. Institute of Physics Slovak Academy of Sciences Dubravska cesta 9 Bratislava 84511 Slovakia
3. Center for Advanced Materials and Applications (CEMEA) Slovak Academy of Sciences Dubravska cesta 5807/9 Bratislava 84511 Slovakia
Abstract
AbstractThe incorporation of large organic ammonium ions renders the crystallization dynamics and layer formation process of halide perovskites complex, difficult to control, and leads to problems of suppressed charge transport with the formation of tiny‐sized grains. In this paper, the use of methylammonium chloride (MACl) and an excess of PbI2 is introduced as a co‐additives in the precursor solution for the control of phenylmethylammonium or benzylammonium (PMA+ spacer) and formamidinium (FA+)‐based quasi‐2D PMA2FAn−1PbnI3n+1 (n = 5) perovskite layers formation. By this method, the morphology of the layer, the inner phase distribution, and the charge transport properties are improved. By employing glow discharge‐optical emission spectroscopy (GD‐OES) and other techniques, it is revealed that the quasi‐2D perovskites prepared in the presence of co‐additives exhibit uniform removal dynamics of the solvent across the film. Furthermore, the grain growth mode, upon thermal annealing, is lateral. It results in large, monolithic grains with low‐trap state density and excellent substrate coverage. Particularly, co‐additives improve the cations dispersion upon the crystallization process, thus suppressing the low‐n phase formed through the aggregation of spacer cations and accelerating the formation of the high‐n phase.
Funder
China Scholarship Council
Agence Nationale de la Recherche
Subject
Mechanical Engineering,Mechanics of Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献