Affiliation:
1. School of Materials Science and Engineering State Key Laboratory of Silicon Materials Zhejiang University Hangzhou 310027 P. R. China
2. Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials Institute of Wenzhou Zhejiang University Wenzhou 325006 P. R. China
3. Wenzhou XINXINTAIJING Tech. Co. Ltd. Wenzhou 325006 P. R. China
4. College of Optical and Electronic Technology China Jiliang University Hangzhou Zhejiang 310018 P. R. China
5. Shanxi‐Zheda Institute of Advanced Materials and Chemical Engineering Shanxi 030000 P. R. China
Abstract
AbstractPassivation of defects in halide perovskite using phosphine oxide or alkyl‐phosphonate has recently obtained a few remarkable achievements. However, effective application of phosphine oxide or alky‐phosphonate in passivating perovskite quantum dots (QDs) are seldom reported due to solubility issue or difficulty of amount control. In this work, two bifunctional organic molecules containing phosphine oxide groups, 2,4,6‐Tris[3‐(diphenylphosphinyl)phenyl]‐1,3,5‐triazine (PO‐T2T) and 2,7‐bis(diphenylphosphoryl)‐9,9′‐spirobifluorene (SPPO13), are deposited on QDs films by thermal evaporation. The molecules, both as passivation agents as well as electron transporting materials, exhibit stark contrast in passivating QDs and in light‐emitting diodes (LEDs) performance. A competition between charge transfer and defect passivation between the QDs and the molecules is proposed. In film, electron transfer from the QDs to PO‐T2T dominates and quench the QDs, while the passivation effect of PO‐T2T on the QDs dominates in driving device and enhances luminance of the LEDs. In contrast, passivation effect of SPPO13 on the QDs dominates both in films and in LEDs. A maximum EQE of 2.67% is obtained for the pure‐blue LED based on SPPO13‐passivated QDs films. This work provides a guide on the selection of passivation agents based on phosphine oxide and a promising passivation method for high‐efficient perovskite QD LEDs.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Zhejiang Province
Subject
Mechanical Engineering,Mechanics of Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献