Surface Passivation with Selected Phosphine Oxide Molecules for Efficient Pure‐Blue Mixed‐Halide Perovskite Quantum Dot Light‐Emitting Diodes

Author:

Chen Fang123,Zhang Dingshuo1,Cui Qiaopeng1,Dai Xingliang1234,Cai Peiqing5,Ye Zhizhen1234,He Haiping1234ORCID

Affiliation:

1. School of Materials Science and Engineering State Key Laboratory of Silicon Materials Zhejiang University Hangzhou 310027 P. R. China

2. Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials Institute of Wenzhou Zhejiang University Wenzhou 325006 P. R. China

3. Wenzhou XINXINTAIJING Tech. Co. Ltd. Wenzhou 325006 P. R. China

4. College of Optical and Electronic Technology China Jiliang University Hangzhou Zhejiang 310018 P. R. China

5. Shanxi‐Zheda Institute of Advanced Materials and Chemical Engineering Shanxi 030000 P. R. China

Abstract

AbstractPassivation of defects in halide perovskite using phosphine oxide or alkyl‐phosphonate has recently obtained a few remarkable achievements. However, effective application of phosphine oxide or alky‐phosphonate in passivating perovskite quantum dots (QDs) are seldom reported due to solubility issue or difficulty of amount control. In this work, two bifunctional organic molecules containing phosphine oxide groups, 2,4,6‐Tris[3‐(diphenylphosphinyl)phenyl]‐1,3,5‐triazine (PO‐T2T) and 2,7‐bis(diphenylphosphoryl)‐9,9′‐spirobifluorene (SPPO13), are deposited on QDs films by thermal evaporation. The molecules, both as passivation agents as well as electron transporting materials, exhibit stark contrast in passivating QDs and in light‐emitting diodes (LEDs) performance. A competition between charge transfer and defect passivation between the QDs and the molecules is proposed. In film, electron transfer from the QDs to PO‐T2T dominates and quench the QDs, while the passivation effect of PO‐T2T on the QDs dominates in driving device and enhances luminance of the LEDs. In contrast, passivation effect of SPPO13 on the QDs dominates both in films and in LEDs. A maximum EQE of 2.67% is obtained for the pure‐blue LED based on SPPO13‐passivated QDs films. This work provides a guide on the selection of passivation agents based on phosphine oxide and a promising passivation method for high‐efficient perovskite QD LEDs.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3