Omniphobic Photoresist‐Assisted Patterning of Porous Polymethacrylate Films

Author:

Kartsev Dmitrii D.1,Lukianov Ilia M.1,Sharapenkov Eduard G.1,Prilepskii Artur Yu.1ORCID,Levkin Pavel A.23ORCID

Affiliation:

1. International Institute “Solution Chemistry of Advanced Materials and Technologies” (SCAMT) ITMO University 9 Lomonosova St. St. Petersburg 191002 Russia

2. Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany

3. Institute of Organic Chemistry (IOC) Karlsruhe Institute of Technology (KIT) Kaiserstraße 12 76131 Karlsruhe Germany

Abstract

AbstractPatterning of various surface properties, including roughness, wettability, adhesiveness, and mechanical properties, can markedly enhance the functionality of test systems. Thus, porous polymethacrylates prepared by polymerization‐induced phase separation (PIPS) represent a promising class of functional materials for the construction of miniaturized test systems. Different porosity, surface chemistry, and wettability are achieved in porous polymethacrylates with different precursor compositions. Nevertheless, only wettability microstructuring has been highlighted for these materials thus far. Here, the study presents a novel method for the direct and selective deposition of porous polymethacrylate films with different surface chemistry and porosity. The selective adhesion of omniphobic–omniphilic wettability patterns is used to facilitate the polymer pattern formation. The feasibility of patterning with different monomers and porogenic solvents is demonstrated. The topological study confirms the selective application of polymer structures with different thickness and roughness. The wettability characterization of the omniphobic material shows no significant changes caused by the operations performed. Thus, a new pattern with a greater difference in the wettability of the areas is produced in the process. Discontinuous dewetting of different liquids is performed. The use of poly(2‐hydroxyethyl methacrylate‐co‐ethylene dimethacrylate) (HEMA‐EDMA) modified patterns for precise living cell patterning is also demonstrated.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3