Affiliation:
1. Department of Biomedical Engineering State University of New York at Binghamton Binghamton NY 13920 USA
2. Department of Electrical and Computer Engineering State University of New York at Binghamton Binghamton NY 13920 USA
Abstract
AbstractPaper, an inexpensive material with natural biocompatibility, non‐toxicity, and biodegradability, allows for affordable and cost‐effective substrates for unconventional advanced electronics, often called papertronics. On the other hand, polymeric elastomers have shown to be an excellent success for substrates of soft bioelectronics, providing stretchability in skin wearable technology for continuous sensing applications. Although both materials hold their unique advantageous characteristics, merging both material properties into a single electronic substrate reimagines paper‐based bioelectronics for wearable and patchable applications in biosensing, energy generation and storage, soft actuators, and more. Here, a breathable, light‐weighted, biocompatible engineered stretchable paper is reported via coaxial nonwoven microfibers for unconventional bioelectronic substrates. The stretchable papers allow intimate bioconformability without adhesive through coaxial electrospinning of a cellulose acetate polymer (sheath) and a silicone elastomer (core). The fabricated cellulose‐silicone fibers exhibit a greater percent strain than commercially available paper while retaining hydrophilicity, biocompatibility, combustibility, disposable, and other natural characteristics of paper. Moreover, the nonwoven stretchable cellulose‐silicone fibrous mat can adapt conventional printing and fabrication process for paper‐based electronics, an essential aspect of advanced bioelectronic manufacturing.
Funder
National Science Foundation
Subject
Mechanical Engineering,Mechanics of Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献