Resolving Diverse Oxygen Transport Pathways Across Sr‐Doped Lanthanum Ferrite and Metal‐Perovskite Heterostructures

Author:

Taylor Sandra D.1ORCID,Yano Kayla H.2ORCID,Sassi Michel1ORCID,Matthews Bethany E.2ORCID,Kautz Elizabeth J.2ORCID,Lambeets Sten V.1ORCID,Neuman Sydney2,Schreiber Daniel K.2ORCID,Wang Le1ORCID,Du Yingge1ORCID,Spurgeon Steven R.23ORCID

Affiliation:

1. Physical and Computational Sciences Directorate Pacific Northwest National Laboratory Richland WA 99352 USA

2. Energy and Environment Directorate Pacific Northwest National Laboratory Richland WA 99352 USA

3. Department of Physics University of Washington Seattle WA 98195 USA

Abstract

AbstractPerovskite structured transition metal oxides are important technological materials for catalysis and solid oxide fuel cell applications. Their functionality often depends on oxygen diffusivity and mobility through complex oxide heterostructures, which can be significantly impacted by structural and chemical modifications, such as doping. Further, when utilized within electrochemical cells, interfacial reactions with other components (e.g., Ni‐ and Cr‐based alloy electrodes and interconnects) can influence the perovskite's reactivity and ion transport, leading to complex dependencies that are difficult to control in real‐world environments. Here, this work uses isotopic tracers and atom probe tomography to directly visualize oxygen diffusion and transport pathways across perovskite and metal‐perovskite heterostructures, that is, (Ni‐Cr coated) Sr‐doped lanthanum ferrite (La0.5Sr0.5FeO3; LSFO). Annealing in 18O2(g) results in elemental and isotopic redistributions through oxygen exchange (OE) in the LSFO while Ni‐Cr undergoes oxidation via multiple mechanisms and transport pathways. Complementary density functional theory calculations at experimental conditions provide rationale for OE reaction mechanisms and reveal a complex interplay of different thermodynamic and kinetic drivers. These results shed light on the fundamental coupling of defects and oxygen transport in an important class of catalytic materials.

Funder

U.S. Department of Energy

Basic Energy Sciences

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3