The Role of Interfacial Interactions and Oxygen Vacancies in Tuning Magnetic Anisotropy in LaCrO3/LaMnO3 Heterostructures

Author:

Zhang Xuanyi1,Al‐Tawhid Athby H.2,Schafer Padraic3,Zhang Zhan4,Kumah Divine P.12ORCID

Affiliation:

1. Department of Physics Duke University Durham NC 27708 USA

2. Department of Physics North Carolina State University Raleigh NC 27695 USA

3. Advanced Light Source Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

4. Advanced Photon Source Lemont IL 76019 USA

Abstract

AbstractThe interplay of lattice, electronic, and spin degrees of freedom at epitaxial complex oxide interfaces provides a route to tune their magnetic ground states. Unraveling the competing contributions is critical for tuning their functional properties. The relationship between magnetic ordering and magnetic anisotropy and the lattice symmetry, oxygen content, and film thickness in compressively strained LaMnO3 (LMO)/LaCrO3 (LCO) superlattices is investigated. Mn–O–Cr antiferromagnetic superexchange interactions across the heterointerface result in a net ferrimagnetic magnetic structure. Bulk magnetometry measurements reveal isotropic in‐plane magnetism for as‐grown oxygen‐deficient thin samples due to equal fractions of orthorhombic a+a‐c‐, and a‐a+c‐ twin domains. As the superlattice thickness is increased, in‐plane magnetic anisotropy emerges as the fraction of the a+a‐c‐ domain increases. On annealing in oxygen, the suppression of oxygen vacancies results in a contraction of the lattice volume, and an orthorhombic to rhombohedral transition leads to isotropic magnetism independent of the film thickness. The complex interactions are investigated using high‐resolution synchrotron diffraction and X‐ray absorption spectroscopy. These results highlight the role of the evolution of structural domains with film thickness, interfacial spin interactions, and oxygen‐vacancy‐induced structural phase transitions in tuning the magnetic properties of complex oxide heterostructures.

Funder

National Science Foundation

Office of Science

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3