Effects of Structure Defects on Thermal Transport at the Graphene–Water Interface

Author:

Zhang Xingli1ORCID,Chen Hao12,Qiao Degao1,Yang Ming23

Affiliation:

1. Department of Engineering Science College of Mechanical and Electrical Engineering Northeast Forestry University Harbin 150040 P. R. China

2. Department of Engineering Science Institute of Engineering Thermophysics Chinese Academy of Sciences Beijing 100190 P. R. China

3. Department of Engineering Science University of Chinese Academy of Sciences Beijing 100049 P. R. China

Abstract

AbstractThe graphene microchannel heat sinks have attracted extensive attention due to its high cooling efficiency in microelectric devices. The interfacial thermal resistance (ITR) between graphene as the bottom layer of microchannel and water is one of the key factors of its good working performance. In this paper, the impacts of structure defects in graphene surfaces on ITR of the graphene–water interface are investigated using molecular dynamic simulations. The results indicate that graphene layer with different types of structure defects shows different variation trends of ITR as the defect concentration or temperature increases. A peak ITR reduction of nearly 30% is generated with the Stone‐Wales defect of 2%. Finally, the density of phonon states and interfacial binding energy analysis are performed to verify the correctness of the simulation results. The present work expands the understanding of structure defects effect on thermal transport in graphene microchannel.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3