Interplay between Collective and Localized Effects of Point Defects on Photoelectrochemical Performance of TiO2 Photoanodes for Oxygen Evolution

Author:

Yang Mengya1,Cui Junyi1ORCID,Daboczi Matyas1ORCID,Law Robert V.2ORCID,Luke Joel3ORCID,Kim Ji‐Seon3ORCID,Hankin Anna1ORCID,Eslava Salvador1ORCID

Affiliation:

1. Department of Chemical Engineering and Centre for Processable Electronics Imperial College London London SW7 2AZ UK

2. Department of Chemistry Imperial College London White City Campus London W12 0BZ UK

3. Department of Physics and Centre for Processable Electronics Imperial College London London SW7 2AZ UK

Abstract

AbstractAmong the various photoanode materials investigated for photoelectrochemical water splitting cells, TiO2 stands out due to its abundance, stability, and favorable valence band edge for water oxidation. In this study, the importance of introducing and combining oxygen and titanium vacancy point defects in anatase TiO2 photoanodes to improve their performance is unveiled, achieving a photocurrent density of 0.73 (±0.015) mA cm−2 at +1.23 VRHE under 100 mW cm−2 of simulated sunlight or 26.4 mA cm−2 at +1.23 VRHE under 100 mW cm−2 of 365 nm light. The characterization by X‐ray photoelectron spectroscopy, surface photovoltage, and electron paramagnetic resonance demonstrates that these oxygen and titanium vacancies can have both collective and localized positive effects on the material, leading to a narrowing of the bandgap, an increase in donor density, and an increase in hydroxyl groups on the surface of TiO2. These result in enhanced light absorption, conductivity, and photovoltage, as well as a more negative flat‐band potential and increase in hole flux to the semiconductor–electrolyte interface. These findings provide valuable insights into the role of point defects in modulating the properties of TiO2 and have important implications for the development of high‐performance TiO2‐based devices.

Funder

Engineering and Physical Sciences Research Council

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3