Affiliation:
1. Molecular Electronics Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
Abstract
AbstractEfficient electron injection from an electrode into an organic semiconductor remains a problem to solve for efficient organic semiconductor devices. In this work, a general method is presented to form an ohmic electron contact by inserting a thin organic interlayer between the metal electrode and the organic semiconductor. It is demonstrated that inserting an interlayer of a few nanometers of an organic semiconductor with a lower electron affinity than the transport material can improve the injected electron current by over three orders of magnitude. The electron current becomes space‐charge limited, demonstrating that the interlayer‐enhanced contact is ohmic. The ohmic‐contact formation by inserting a thin interlayer is ascribed to the elimination of barrier formation as a result of direct contact between the metal and organic semiconductor. Additionally, it is demonstrated that it is possible to achieve solution processing of such interlayers on top of organic semiconductors. The method is generalized for different interlayer materials as well as for different organic semiconductors, providing a general method for ohmic electron injection in organic devices.
Subject
Mechanical Engineering,Mechanics of Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献