A Systematic Study on the Physicochemical Interactions Between Polymeric Micelles and Mucin: Toward the Development of Optimal Drug Delivery Nanocarriers

Author:

Tollemeto Matteo1ORCID,Badillo‐Ramírez Isidro1ORCID,Thamdrup Lasse Højlund Eklund1,Li Yudong2,Ghavami Mahdi1,Padial Tania Patiño2,Christensen Jørn B.3,van Hest Jan2ORCID,Boisen Anja1

Affiliation:

1. The Danish National Research Foundation and Villum Foundation's Center IDUN Department of Health Technology Technical University of Denmark Kgs. Lyngby Denmark

2. Department of Biomedical Engineering Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven The Netherlands

3. Department of Chemistry University of Copenhagen Thovaldsensvej 40 Frederiksberg DK‐1871 Denmark

Abstract

AbstractThe optimal performance of drug delivery formulations, including polymeric nanoparticles, relies on particle distribution throughout the body and the interactions with biological barriers, particularly mucosal layers, which often limit their potential. A systematic and comprehensive study is presented through a multidisciplinary approach combining conventional and novel techniques for in vitro studies to understand the key molecular interactions between polymeric micelles and mucin. The results shows that polymeric micelles are integrates within the mucin layer, mirroring its viscoelastic properties, evidenced as a dissipation difference of 0.1 ± 0.44, measured by quartz crystal microbalance with dissipation. Surface‐enhanced Raman scattering reveals predominant hydrogen bonding within the mucin's hydrophilic core, while the isothermal titration calorimetry method confirms multiple non‐specific binding sites on the protein backbone. By performing the periodic acid‐Schiff stain assay, a binding amount of 0.20 mg of mucin per milligram of nanoparticles is quantified. Furthermore, motility studies show the surface binding of mucin on the polymeric nanoparticles influencing their Brownian motion. This study sheds light toward the improvement for a better drug delivery formulation and fabrication of optimal nanoparticle colloidal systems, which can advance translational drug delivery technologies into clinical application while enriching the field of surface and colloidal chemistry.

Funder

Villum Fonden

Danmarks Grundforskningsfond

Novo Nordisk Fonden

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3