Affiliation:
1. Centre d'Optique Photonique et Lasers (COPL) Université Laval 2375 rue de la Terrasse Québec QC G1V 0A6 Canada
2. Institut für Physikalische Chemie I: Kolloide und Nanooptik Heinrich‐Heine‐Universität Düsseldorf Universitätsstr. 1 40225 Düsseldorf Germany
Abstract
AbstractIn recent years, hydrogel‐based soft materials with hybrid properties have found widespread use in various technological fields, including tissue engineering, soft actuators, and flexible electronics. The proper implementation of these smart multifunctional materials into real‐world applications requires the development of simple, cost‐effective, and large‐scale fabrication methods. Herein, a simple compression‐ and colloid‐based method is presented to fabricate responsive Au‐poly(N‐isopropylacrylamide) (pNIPAM) hybrid films using photopolymerizable resin containing Au‐pNIPAM core–shell microgels as building blocks. Uniform Au‐pNIPAM hybrid films of 25 × 25 mm with adjustable thickness in the micron‐size range (2.3–1.2 µm) w ere successfully fabricated on glass substrates and flexible commercial acetate sheets. The resulting flexible Au‐pNIPAM films exhibit robust optical and mechanical properties, even after repeated edge‐to‐edge bending cycle tests. Additionally, using patterned light to polymerize the Au‐pNIPAM films allows synthesizing of anisotropic Au‐pNIPAM microgels with high width‐to‐height aspect ratios, such as square, circular, and rectangular microgels, adding a new dimension to the proposed fabrication method.
Funder
Deutsche Forschungsgemeinschaft
Natural Sciences and Engineering Research Council of Canada
Subject
Mechanical Engineering,Mechanics of Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献