Advanced Biomimetic Nanostructured Microelectrode Arrays for Enhanced Extracellular Recordings of Enteric Neurons

Author:

Nowduri Bharat1ORCID,Schulte Steven1ORCID,Jolfaei Negin Adavoudi2,Decker Dominique1ORCID,Rabe Holger1ORCID,Schäfer Karl‐Herbert1ORCID,Saumer Monika1ORCID

Affiliation:

1. Department of Microsystems Technology University of Applied Sciences Kaiserslautern Amerikastraße 1 66482 Zweibrücken Germany

2. Division of Neurobiology and Zoology Technical University of Kaiserslautern Erwin Schrödinger‐Straße 13 D 67663 Kaiserslautern Germany

Abstract

AbstractMicroelectrode surfaces covered with nanostructures derived from components of extracellular matrix, such as collagen fibers, have shown immense beneficial effects in promoting neuronal growth and cellular signaling. Synthetic nanostructures mimicking the features of biological nanostructures with durable conductive materials could promote the cell adhesion on microelectrode surfaces by providing topographical cues and simultaneously improve the charge transfer properties by reducing its global impedance. Therefore, an advanced nanostructuring method mimicking the structural and organizational features of natural collagen fibers onto metallic microelectrode surfaces has been presented here, which is adapted from previous technological achievements of the group and is based on nanoimprint lithography and gold electroplating. Surface characterization methods reveal an increase in surface area between 20% and 68% on the microelectrodes fabricated with two different nanostructure heights. Impedance spectroscopy measurements reveal reduction in impedance magnitude (at 1 kHz) between 22% and 41%, depending upon the nanostructure height and density on the microelectrode, which should subsequently modulate its charge transfer properties for biosensing application. Cell adhesion analysis performed with seal impedance measurements reveals a tighter coupling of enteric neurons on the nanostructured microelectrodes. Finally, extracellular recordings from enteric neurons exhibit a significant improvement in spike detection properties of the nanostructured microelectrodes.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3