Melanin Zinc Complex as a Biocompatible Agent for Clearing Bacteremia

Author:

Eliato Tahmineh Rahmani1,Edwards Seth1,Tian Zhen1,Andam Cheryl P.2,Jeong Kyung Jae1ORCID,Kim Young Jo1ORCID

Affiliation:

1. Department of Chemical Engineering University of New Hampshire Durham NH 03824 USA

2. Department of Biological Sciences University at Albany State University of New York Albany NY 12222 USA

Abstract

AbstractSepsis, whole‐body inflammation caused by the contamination of blood by bacteria and endotoxins, affects millions of patients annually with high mortality rates. A recent promising approach to treat sepsis involves the removal of bacteria and endotoxins using extracorporeal blood‐cleansing devices. However, poor specificity, slow recognition of pathogens, and high costs remain the main limitations. Here, the melanin, a biologically derived pigment, is reported for the rapid binding of bacteria and endotoxins from the contaminated blood . This novel approach utilizes the specific binding between Zn2+‐loaded melanin and bacteria/endotoxins with minimal nonspecific interactions with human blood components. Melanin contains various chemical functional groups that allow reversible chelation of metallic ions such as Zn2+ via redox reactions. Zn2+ enables rapid and specific binding with bacteria/endotoxins due to the strong electrostatic interactions between Zn2+ and phosphate ions. The presence of various zinc‐binding proteins on the bacterial cell membrane further enhances the binding. The well‐known biocompatibility and low cost make melanin an ideal material to interface with human blood. Zn2+‐charged melanin can remove 90% of E. coli and 100% of endotoxin in PBS and human blood. Zn2+‐melanin also demonstrated excellent hemocompatibility shown by protein adsorption, blood coagulation, and hemolysis tests.

Funder

National Institutes of Health

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3