A Flexible and Wearable Chemiresistive Biosensor Fabricated by Laser Inducing for Real‐Time Glucose Analysis of Sweat

Author:

Sun HongXun1ORCID,Song Shujia1,Zhao Guo1ORCID,Wang Xiaochan2,Liu Gang3

Affiliation:

1. College of Artificial Intelligence Nanjing Agricultural University Nanjing 210031 P. R. China

2. College of Engineering Nanjing Agricultural University Nanjing 210031 P. R. China

3. Key Lab of Agricultural Information Acquisition Technology Ministry of Agricultural of China China Agricultural University Beijing 100083 P. R. China

Abstract

AbstractIn this study, a flexible and wearable chemiresistive biosensor (FWCB) is developed for the real‐time analysis of glucose in sweat on the human skin surface based on a novel detection strategy of p‐type reduced graphene oxide (rGO) sensing film, which met the requirements of rapid, nondestructive testing. The proposed FWCB is fabricated in the form of interdigital electrodes (IEs) made of laser‐induced graphene (LIG) synthesized by the laser inducing of a polyimide (PI) film. Additionally, a semiconducting rGO sensing film modified on the surface of IEs is synthesized by thermal reduction of graphene oxide (GO), which is functionalized with glucose oxidase (GOx) by chemical cross‐linking to obtain GOx/FWCB. Moreover, the key parameters for FWCB fabrication are optimized, and the sensing strategy of the proposed GOx/FWCB is also investigated. The results show that the proposed GOx/FWCB can be used for the detection of glucose in the range of 0.01–3.0 mM with satisfactory selectivity, and the limit of detection (LOD) is calculated to be as low as 0.8 µM (S/N = 3). These dramatic advantages endow the proposed FWCB with broad application prospects in the field of portable, wearable, and real‐time detection of glucose in human sweat for health monitoring.

Funder

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3