Affiliation:
1. Materials Science and Engineering Program University of California San Diego La Jolla CA 92093 USA
2. Department of NanoEngineering University of California San Diego La Jolla CA 92093 USA
3. Chemical Engineering Program University of California San Diego La Jolla CA 92093 USA
Abstract
AbstractShape morphing of stimuli‐responsive composite hydrogels has received considerable attention in different research fields. Although various multilayer structures with dissimilar materials are studied to achieve shape morphing, combining swellable hydrogel layers with non‐swellable layers results in issues with interface adhesion and structural integrity. In this study, single‐hydrogel‐based bilayer actuators comprising poly(N‐isopropylacrylamide) (PNIPAM) matrices and graphene oxide (GO)–PNIPAM hinges are presented. Upon temperature rising, the PNIPAM hydrogel acts as the passive layer due to the formation of dense microstructures near the surface (i.e., the skin layer effect), whereas the GO‐PNIPAM hydrogel functions as the active layer, maintaining porous due to structural modification by the presence of GO. Under light exposure, the GO‐PNIPAM hinges experience selective heating due to the photothermal effect of GO. Consequently, the resulting bilayer structures exhibit programmable dual‐responsive 3D shape morphing. Additionally, the folding kinetics of these actuators can be adjusted based on the applied stimulus (temperature changes or light), as they are driven by different mechanisms, the skin layer, or photothermal effects, respectively. Furthermore, the hinge‐based bilayer structures demonstrate walking and steering locomotion by light exposure. This approach can lead to advances in soft robotics, biomimetic systems, and autonomous soft actuators in hydrogel‐based systems.
Funder
National Science Foundation
Subject
Mechanical Engineering,Mechanics of Materials
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献