Affiliation:
1. Science and Technology on Advanced Ceramic Fibers and Composites Laboratory College of Aerospace Science and Engineering National University of Defense Technology Changsha 410073 China
Abstract
AbstractTunable emissivity technology is promising for the dynamic regulation of infrared radiation. Herein, infrared electrochromic devices based on thin metal films that operate via a novel hydrogen‐induced metal–insulator transition are demonstrated. The use of thin magnesium–nickel (MgxNi) alloy films as both a variable emissivity material and top conductive electrode simplifies the device structure and ensures that large changes in emissivity can be achieved. The constructed sandwich‐structured electrochromic devices also have polyethyleneimine (PEI) as a middle proton‐conducting electrolyte layer and hydrogen tungsten bronze (HxWO3)/indium tin oxide (ITO) as a bottom ion‐storage layer. Upon application of a voltage of ±2.6 V, the emissivity of the MgxNi/Pd/PEI/HxWO3/ITO device can be reversibly regulated, with emissivity changes of 0.48 and 0.43 in the 3–5 and 7.5–14 µm atmospheric windows, respectively. Under open‐circuit conditions, the high‐emissivity state of the device can be stably maintained for 3 h. The emissivity change is affected by the composition and thickness of the MgxNi film and the device failure mechanism involves the breakage and oxidation of this film after cycling. Corresponding flexible devices that exhibit electrochromism in the visible region have great potential for adaptive thermal camouflage, smart thermal management, and dynamic information displays.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献