Affiliation:
1. The School of Electrical Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
2. Future Innovation Research Center Korea Aerospace Research Institute (KARI) Daejeon 34133 Republic of Korea
3. Nano Convergence Technology Division National Nanofab Center (NNFC) Daejeon 34141 Republic of Korea
Abstract
AbstractConductive bridge random‐access memory (CBRAM) are two terminal devices that offer excellent switching performance. In addition, CBRAM shows various switching modes, including volatile threshold switching (TS) and nonvolatile threshold switching (N‐TS). These properties expand its applications to memory, selector, biological synapses, and neurons. However, due to the uncontrollable behavior of stochastic switching between TS and N‐TS in CBRAM devices, a novel approach is needed to improve the switching performance of CBRAM. Moreover, conventional devices that have different stacking between TS and N‐TS increase fabrication cost and worsen the device yield. Here, the selector‐memory bi‐functionality with self‐current regulation effect of Ag‐inserted Ge2Sb2Te5 (GST) thin films is demonstrated. Selector‐memory bi‐functionality, having TS behavior with an adjustable on/off current, with confined conductive filaments (CFs) improves the uniformity and reduces the fabrication cost by implementing TS/N‐TS in a single stack. From the material analysis, it becomes evident that confined Ag‐based CFs within GST films are key factors for realizing selector‐memory bi‐functionality. The selector‐memory bi‐functionality is achieved through the reaction of Ag metal cations with non‐bonded Te atoms in GST film depending on field polarity. These results suggest that the Ag‐inserted GST film contributes to the development of large‐scale nonvolatile memory and neuromorphic application.
Funder
National NanoFab Center
Ministry of Science and ICT, South Korea