Affiliation:
1. Department of Physical Science and Engineering Nagoya Institute of Technology Nagoya 466–8555 Japan
2. Centre for Theoretical Chemistry and Physics School of Natural Sciences Massey University Auckland 0632 New Zealand
3. Institute of Laser Engineering Osaka University 2–6 Yamadaoka Suita Osaka 565–0871 Japan
Abstract
AbstractHigh photon energy vacuum ultraviolet radiation (VUV, 100−200 nm wavelength) is challenging to detect. It easily degrades conventional silicon and semiconductor photodetectors. Fluoride photodetectors can be the answer, but the correlation between fabrication parameters and photodetector performance is not known. Here, the effect of annealing is investigated on the characteristics of neodymium trifluoride thin film/quartz substrate interface and NdF3 photoconductivity within the VUV. Thin films are deposited on unheated and heated (600 °C) substrates with post‐deposition annealing. Dark current of films on unheated substrates decreases by as much as 1/10 as resistance increases from 1 −12 TΩ after annealing. Dark current of films on heated substrates increases even after annealing, resulting in similar photo and dark currents of ≈303.7 nA and poor detectors. Fluorine diffuses from the film to the substrate during deposition, exacerbated by substrate heating but not by annealing. Fluorine diffusion degrades crystallinity near the interface, increasing the dark current. Fluorine diffusion is absent when MgF2 is used as the heated substrate. Unannealed NdF3/MgF2 detector on 600 °C‐heated substrate and 600 °C‐annealed NdF3/SiO2 detector on unheated substrate exhibit similar resistances of ≈14 TΩ. Considering the film/substrate interface and annealing is crucial when developing VUV photodetectors.
Funder
Iketani Science and Technology Foundation
Amada Foundation
Osaka University
Royal Society Te Apārangi
Ministry of Business, Innovation and Employment
Subject
Mechanical Engineering,Mechanics of Materials