Investigation of the Stability of the Poly(ethylene oxide)|LiNi1‐x‐y CoxMnyO2 Interface in Solid‐State Batteries

Author:

Yusim Yuriy12ORCID,Hunstock Dirk F.12,Mayer Alexander34ORCID,Bresser Dominic34ORCID,Passerini Stefano345ORCID,Janek Jürgen12ORCID,Henss Anja12ORCID

Affiliation:

1. Institute of Physical Chemistry Justus Liebig University Giessen Heinrich‐Buff‐Ring 17 35392 Giessen Germany

2. Center for Materials Research (ZfM/LaMa) Justus Liebig University Giessen Heinrich‐Buff‐Ring 16 35392 Giessen Germany

3. Helmholtz Institute Ulm (HIU) Helmholtzstraße 11 89081 Ulm Germany

4. Karlsruhe Institute of Technology (KIT) P.O. Box 3640 76021 Karlsruhe Germany

5. Department of Chemistry Sapienza University of Rome P. Aldo Moro 5 Rome 00185 Italy

Abstract

AbstractWhile solid‐state batteries (SSBs) comprising poly(ethylene oxide) (PEO) based electrolytes are successfully commercialized already for operation at elevated temperature, the selection of the cathode active material (CAM) has so far been limited to LiFePO4. When using high‐voltage CAMs such as LiNi1‐xyCoxMnyO2 (NCM), the cells experience fast capacity fading – the cause of which is not consistently understood in literature. In this study, electrochemical impedance spectroscopy measurements in a three‐electrode setup are applied to confirm that the NCM|PEO interface is indeed the Achilles' heel in PEO‐based SSBs at high voltages. In this regard, the interfacial stability on the cathode side depends not only on the upper cut‐off voltage, but also on the molecular weight of PEO, strongly affecting the cell performance. Scanning electron microscopy images of the cathodes after cycling suggest that at high voltages interfacial degradation leads to fragmentation of the polymer backbone and to a decrease in viscosity of the solid polymer electrolyte. Overall, the results help to understand the detrimental processes occurring in PEO‐based SSBs in combination with high‐voltage cathodes.

Funder

Bundesministerium für Bildung und Forschung

Helmholtz Association

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3