Affiliation:
1. Department of Energy and Process Engineering Norwegian University of Science and Technology Trondheim NO‐7491 Norway
2. Department of Mechanical Engineering Inha University Incheon 22212 Republic of Korea
Abstract
AbstractControlling the wettability using microstructures has been studied because of many applications. In particular, bio‐mimetic microstructures modeled after the self‐cleaning properties of the lotus leaf have been extensively studied. Despite many studies successfully achieving the fabrication of superhydrophobic to superhydrophilic surfaces through the manipulation of microstructures, the effect of rough surfaces on contact angle remains an area of inquiry. In this study, conical microstructures with well‐defined geometric parameters are fabricated over a silicon wafer. They are replicated into soft matter that has transparent and flexible characteristics. From the measurement of the contact angle for fabricated surfaces, the prediction of the criteria for transitioning from the Cassie‐Baxter state to the Wenzel state can be suggested. Furthermore, the fabrication of an inexpensive, transparent, elastic, and superhydrophobic surface based on truncated micro‐conical structures in PDMS can be suggested.
Funder
Norges Forskningsråd
National Research Foundation of Korea
Subject
Mechanical Engineering,Mechanics of Materials
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献