Organic Electronics Circuitry for In Situ Real‐Time Processing of Electrophysiological Signals

Author:

De Salvo Anna12ORCID,Rondelli Federico12,Di Lauro Michele2ORCID,Tomassini Alice2,Greco Pierpaolo1ORCID,Stieglitz Thomas3ORCID,Fadiga Luciano12ORCID,Biscarini Fabio24ORCID

Affiliation:

1. Sezione di Fisiologia Dipartimento di Neuroscienze e Riabilitazione Università di Ferrara Via Fossato di Mortara 17–19 Ferrara 44121 Italy

2. Center for Translational Neurophysiology of Speech and Communication Fondazione Istituto Italiano di Tecnologia (IIT‐CTNSC) Via Fossato di Mortara 17‐19 Ferrara 44121 Italy

3. Department of Microsystems Engineering (IMTEK) University of Freiburg 79110 Freiburg Germany

4. Dipartimento di Scienze della Vita Università di Modena e Reggio Emilia Via Campi 103 Modena 41125 Italy

Abstract

AbstractThe next generation of brain–machine interfaces are envisioned to couple signal transduction, filtering, and sorting on board with minimum power consumption and maximum bio‐integrability. These functional needs shall be mandatorily met in order to design efficient closed‐loop brain–machine interfaces aimed at treating and monitoring various disorders of the central and peripheral nervous system. Here, the pivotal role is highlighted that organic bioelectronics may have in the contextual development of all these three desiderata, by demonstrating a modular organic‐electronics circuit toward real‐time signal filtering. The inherent filtering capabilities of electrolyte‐gated organic transistor are tuned via adjustment of operational conditions and benchmarked in an electromyography experiment. Additionally, a whole‐organic signal processing circuitry is presented, coupling such transistors with ad hoc designed organic passive components. This provides the possibility to sort complex signals into their constitutive frequency components in real time, thereby delineating innovative strategies to devise organic‐based functional building‐blocks for brain–machine interfaces.

Funder

Istituto Italiano di Tecnologia

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Organic mixed conductors for bioinspired electronics;Nature Reviews Materials;2023-12-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3