Multi‐layer Architecture of Novel Sea Urchin‐like Co‐Hopeite to Boosting Overall Alkaline Water Splitting

Author:

Huang Yankai1,Song Xudong2,Chen Sibao3,Zhang Jie4,Gao Hanqing1,Liao Jianjun1,Ge Chengjun1,Sun Wei1ORCID

Affiliation:

1. Key Laboratory of Agro‐Forestry Environmental Processes and Ecological Regulation of Hainan Province School of Ecology and Environment Hainan University 58 Renmin Road Haikou 570228 P. R. China

2. State Key Laboratory of High‐Efficiency Utilization of Coal and Green Chemical Engineering Ningxia University Yinchuan 750021 P. R. China

3. Changjiang Institute of Survey Planning Design and Research Key Laboratory of Changjiang Regulation and Protection of Ministry of Water Resources Wuhan 430010 P. R. China

4. School of Energy and Power Engineering University of Shanghai for Science and Technology Shanghai 200093 P. R. China

Abstract

AbstractElectrochemical water splitting coupled with renewable energy offers a promising avenue for energy conversion and storage, but it is also extremely suppressed by the sluggish kinetics of oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, a multi‐layer architecture strategy was utilized by the in situ growth for cobalt phosphate of Hopeite‐like phase (Co‐H) on NiCo‐layered double hydroxide (NiCo‐LDH) to prepare a self‐supported electrode (Co‐H/NiCo@NF). The Co‐H formed over the NiCo‐LDH shows a unique sea urchin‐like morphology. The Co‐H/NiCo@NF displays excellent HER and OER activity, requiring only overpotentials of 180 mV and 350 mV to deliver 100 mA cm−2, consequently, be capable to generate an appealing cell potential of 1.76 V for overall water splitting at the corresponding current density. In addition, the prepared Co‐H/NiCo@NF has long‐term stability against 500 mA cm−2 and exhibits a trend of increased activity, which may associate with the structural reconstructions to form new phases and the strong bonding between layers. These findings demonstrate that the multi‐layer architecture with fine‐component modulation is a promising strategy for the development of robust and efficient cobalt phosphate electrocatalysts, and the role of multi‐layer in the evolution of structural reconstructions deserves further investigation.

Funder

Natural Science Foundation of Hainan Province

National Natural Science Foundation of China

Hainan University

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3