Substrate Induced van der Waals Force Effects on the Stability of Violet Phosphorus

Author:

Singh Sarabpreet1,Ghafariasl Mahdi1,Ko Hsin‐Yu2,Gamage Sampath1,DiStasio Robert A.2,Snure Michael3,Abate Yohannes1ORCID

Affiliation:

1. Department of Physics and Astronomy University of Georgia Athens GA 30602 USA

2. Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA

3. Air Force Research Laboratory Sensors Directorate Wright Patterson Air Force Base Dayton OH 45433 USA

Abstract

AbstractSince the first isolation of graphene, the importance of van der Waals (vdW) interactions has become increasingly recognized in the burgeoning field of layered materials. In this work, infrared nanoimaging techniques and theoretical modeling are used to unravel the critical role played by interfacial vdW interactions in governing the stability of violet phosphorus (VP)—a recently rediscovered wide bandgap p‐type semiconductor—when exfoliated on different substrates. It is demonstrated that vdW interactions with the underlying substrate can have a profound influence on the stability of exfoliated VP flakes and investigate how these interactions are affected by flake thickness, substrate properties (e.g., substrate hydrophilicity, surface roughness), and the exfoliation process. These findings highlight the key role played by interfacial vdW interactions in governing the stability and physical properties of layered materials, and can be used to guide substrate selection in the preparation and study of this important class of materials.

Funder

Air Force Office of Scientific Research

Gordon and Betty Moore Foundation

National Science Foundation

National Energy Research Scientific Computing Center

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3