Revealing the Friction Stress of Microalgae in Microfluidic Devices through Mechanofluorochromism

Author:

Casimiro Lorenzo1ORCID,Métivier Rémi1ORCID,Le Pioufle Bruno2ORCID,Bensalem Sakina2ORCID,Allain Clémence1ORCID

Affiliation:

1. Université Paris‐Saclay ENS Paris‐Saclay, CNRS, PPSM Gif‐sur‐Yvette 91190 France

2. Université Paris‐Saclay ENS Paris‐Saclay, CNRS, Institut d'Alembert, LuMIn Gif‐sur‐Yvette 91190 France

Abstract

AbstractPolydiacetylenes are deeply investigated for their mechanofluorochromic behavior: the blue, non‐emitting solid phase, obtained by photopolymerization of the diacetylene precursor, is converted to the red, emitting one by a mechanical stimulus. Inspired by the great potentiality of these compounds to act as microscale force probes, the mechanofluorochromism is implemented in microalgae biotechnology. Indeed, mechanical solicitations in a microfluidic chip can weaken the cellular envelope and facilitate the extraction of high‐added value compounds produced by the microalgae. Herewith, a polydiacetylene‐based mechanofluorochromic sensor is reported to be able to detect the stress applied to microalgae in microchannels. A triethoxysilane diacetylene precursor is designed that photopolymerizes in a purple, low‐emissive phase, and is converted to the red, high‐emissive phase upon mechanical stress. Hereafter, a protocol is set up to chemically graft in the microfluidic channels a polydiacetylene layer, and eventually proves that upon compression of Chlamydomonas reinhardtii microalgae in restricted areas, the friction stress is revealed by the mechanofluorochromic response of the polydiacetylene, leading to a marked fluorescence enhancement up to 83%. This prototype of microscale force probes lays the ground for microscale stress detection in microfluidics environments, which can be applied not only to microalgae but also to any mechano‐responsive cellular sample.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3