Pickering Water‐in‐Oil Emulsions Stabilized Solely by Fat Crystals

Author:

Tenorio‐Garcia Elizabeth1,Araiza‐Calahorra Andrea1,Rappolt Michael1ORCID,Simone Elena12ORCID,Sarkar Anwesha1ORCID

Affiliation:

1. Food Colloids and Bioprocessing Group School of Food Science and Nutrition University of Leeds Leeds LS2 9JT UK

2. Department of Applied Science and Technology (DISAT) Politecnico di Torino Torino 10129 Italy

Abstract

AbstractWater‐in‐oil (W/O) emulsions have attracted heightened attention because of the ever‐increasing interest in using non‐calorific water to replace calorie‐dense fat in food. However, designing clean‐label and ultra‐stable W/O emulsions is a longstanding challenge in colloid science. Herein, a novel, facile approach is introduced to designing cocoa butter (CB)‐based crystals to stabilize Pickering W/O emulsions. Results using a combination of small‐ and wide‐angle X‐ray scattering and microscopy across length scales reveal that the fat crystals formed in an oleogel of CB with vegetable oil offer high stability to water droplets (up to 60% (v/v)) against coalescence and phase inversion, over storage for 7 months. Such extraordinary stability is attributed to the nanoplatelet‐like CB crystals of βV polymorph located at the water–oil interface and to the inter‐droplet fat crystal network formation, interlocking the water droplets. The increment in water volume fraction endows gel‐like properties with the water droplets acting as “active fillers.” These newly designed Pickering W/O emulsions stabilized solely by fat crystals with unusual rigidity offer great promise for fabricating advanced functional materials in food, pharmaceutics, and cosmetic applications, where long‐term stabilization of water droplets using sustainable particles is a necessity.

Funder

European Research Council

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3