Affiliation:
1. Robotic Micro‐nano Manipulation Lab College of Biosystems Engineering and Food Science Zhejiang University Hangzhou 310058 China
2. College of Agriculture and Biotechnology Zhejiang University Hangzhou 310058 China
3. Department of Computer Science Technische Universitat Munich 999035 Munich Germany
Abstract
AbstractThe mechanical properties of cells play an important role in cell development and function. Therefore, measurement of cell mechanical properties is a fundamental and essential tool for cell research. In this article, a novel method to estimate the force exerted on a living cell is proposed based on glass needle deformation, which does not require additional physical sensors compared with other force‐sensing methods. The three‐dimensional (3D) spatial state of the needle is reconstructed, and the parameters of needle deflection are obtained based on a multi‐focus image fusion algorithm. The average reconstruction error of this algorithm is 0.94 µm. Based on the deformation of the needle, a mechanical model of needle deformation is established, and the model is calibrated using a constructed calibration system. At the range of 0–200 µN, the highest resolution is 0.002 µN and the lowest resolution is 5.3 µN. The proposed method can be used to estimate the force exerted by a needle on the surface of a living cell.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献