Facile and Controllable Ultrasonic Nebulization Method for Fabricating Ti3C2Tx‐Based Strain Sensor and Monitoring of Human Motion and Sound Wave

Author:

Qu Danyao1,Li Zekun1,Liu Mengge2,Jiang Xue1,Jian Yingying1,Peng Gang1,Yang Peixin1,Feng Huanran1,Wang Tianliang2,Hu Wenwen2,Du Tao134ORCID,Wu Weiwei1ORCID

Affiliation:

1. School of Advanced Materials and Nanotechnology Xidian University Xi'an Shaanxi 710126 P. R. China

2. School of Aerospace Science and Technology Xidian University Xi'an Shaanxi 710126 P. R. China

3. State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 P. R. China

4. Shandong Laboratory of Yantai Advanced Materials and Green Manufacture Yantai Shandong 264006 P. R. China

Abstract

AbstractFlexible and wearable electronic devices hold great potential in electronic skins, health monitoring systems and soft robotics. Among them, flexible strain sensors with high performance are key components for wearable health monitoring devices. However, the facile and controllable preparation of highly sensitive sensors still faces significant challenges. By virtue of excellent conductivity of 2D transition metal carbids (MXenes), this work reports a facile and low‐cost fabrication strategy for large‐scale production of strain sensors. The sensitive layer is deposited on flexible interdigital electrodes by ultrasonic nebulization of Ti3C2Tx nanosheets. By controlling the nebulization time, different thicknesses of Ti3C2Tx films has a great influence on the performance of strain sensors. The Ti3C2Tx‐based strain sensor exhibits good sensing performances such as high GF (19.1) in the low strain range (≈0.25%–1.14%), short response time (0.7 s), and stable durability (over 1000 cycles). In practice, the potential applications of the strain sensor in sound frequency detection, human physiological signal monitoring and facial expression recognition are demonstrated. Finally, this work integrates the strain sensor with a miniaturized analyzer to assemble a wearable motion monitoring device for mobile healthcare. This study provides a facile strategy for fabricating flexible strain sensors in the field of wearable electronics.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3