Carbon Monoxide Reduction Reaction to Produce Multicarbon Products in Acidic Electrolytes Using Gas Diffusion Electrode Loaded with Copper Nanoparticles

Author:

Kurihara Ryo1,Nagita Kaito1,Ohashi Keitaro1,Mukouyama Yoshiharu12,Harada Takashi13,Nakanishi Shuji13,Kamiya Kazuhide13ORCID

Affiliation:

1. Research Center for Solar Energy Chemistry Graduate School of Engineering Science Osaka University 1–3 Machikaneyama Toyonaka Osaka 560‐8531 Japan

2. Division of Science College of Science and Engineering Tokyo Denki University Hatoyama Saitama 350–0394 Japan

3. Innovative Catalysis Science Division Institute for Open and Transdisciplinary Research Initiatives (ICS‐OTRI) Osaka University Suita Osaka 565‐0871 Japan

Abstract

AbstractThe synthesis of multi‐carbon products (C2+) by electrochemical CO2 reduction reaction (CO2RR) is a promising technology that will contribute to the realization of a carbon‐neutral society. In particular, efficient CO2RR to produce C2+ in acidic electrolytes is desirable because the conversion of CO2 to inert (bi)carbonate can be suppressed under acidic conditions, thereby increasing the efficiency of substrate CO2 utilization. Herein, since C2+ products are produced via the dimerization of carbon monoxide, an intermediate in CO2RR, the focus is on the carbon monoxide reduction reaction (CORR). A gas diffusion electrode loaded with copper nanoparticles is used in acidic electrolytes to investigate the conditions necessary for efficient C2+ production. The faradaic efficiency and partial current density for C2+ production attained 75% and 280 mA cm−2 in a pH 2.0 solution, and they reached up to 66% and 260 mA cm−2 even in a pH 1.0 solution. Numerical simulations showed that increasing the alkalinity of the electrode surface to greater than pH 7 by consuming protons is necessary to facilitate the production of C2+ during the CORR. When the desired level of alkalinity is achieved, the concentration and type of alkali cations present at the electrode surface have an impact on the selectivity for C2+ production.

Funder

New Energy and Industrial Technology Development Organization

Core Research for Evolutional Science and Technology

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3