Compatible Solution‐Processed Interface Materials for Improved Efficiency of Polymer Solar Cells

Author:

Xu Zhuo12ORCID,Madalaimuthu Jose Prince12,Slowik Josef Bernd12,Meitzner Rico12,Anand Aman12,Alam Shahidul123,Corte Héctor4,Stumpf Steffi15,Schubert Ulrich S.125,Hoppe Harald12ORCID

Affiliation:

1. Laboratory of Organic and Macromolecular Chemistry (IOMC) Friedrich Schiller University Jena Humboldtstrasse 10 07743 Jena Germany

2. Center for Energy and Environmental Chemistry Jena (CEEC Jena) Friedrich Schiller University Jena Philosophenweg 7a 07743 Jena Germany

3. King Abdullah University of Science and Technology (KAUST) KAUST Solar Center (KSC) Physical Sciences and Engineering Division (PSE) Material Science and Engineering Program (MSE) Thuwal 23955–6900 Kingdom of Saudi Arabia

4. Nanosurf AG Gräubernstrasse 12‐14 Liestal 4410 Switzerland

5. Jena Center for Soft Matter (JCSM) Friedrich Schiller University Jena Philosophenweg 7 07743 Jena Germany

Abstract

AbstractThe electron transport layer (ETL) in an organic solar cell is one of the main components that play a crucial role in the extraction of charges, improving efficiency, and increasing the lifetime of the solar cells. Herein, solution‐processed PBDTTT‐C‐T:PC71BM‐based organic solar cells are fabricated using conjugated PDINO molecules, sol‐gel derived under stoichiometric titanium oxide (TiOx), and a mixture of the same as an ETL. For PBDTTT‐C‐T:PC71BM‐based organic solar cells, a blend of organic‐inorganic ETLs demonstrates reduced bimolecular recombination and trap‐assisted recombination than a single ETL of either two materials. Furthermore, in both, fullerene and nonfullerene systems, the efficiency of the devices employing the blend ETL as compared to the single ETLs show some performance improvement. The strategy of integrating compatible organic and inorganic interface materials to improve device efficiency and lifetime simultaneously, and demonstrate the universality of different systems, has potential significance for the commercial development of organic solar cells.

Funder

China Scholarship Council

Deutsche Forschungsgemeinschaft

European Commission

European Regional Development Fund

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3