Efficient Energy Transfer and Singlet Fission in Co‐Deposited Thin Films of Pentacene and Anthradithiophene

Author:

Hofeditz Nico1ORCID,Hausch Julian2ORCID,Broch Katharina2ORCID,Heimbrodt Wolfram1,Schreiber Frank2ORCID,Gerhard Marina1ORCID

Affiliation:

1. Faculty of Physics and Materials Science Center Philipps‐Universität Marburg Renthof 7a D‐35032 Marburg Germany

2. Institut für Angewandte Physik Universität Tübingen Auf der Morgenstelle 10 D‐72076 Tübingen Germany

Abstract

AbstractCo‐deposited molecular heterostructures with statistical intermixing of the constituents are attractive candidates to tune the optical and the transport properties, as well as the ability to promote photophysical processes like singlet fission. In order to comprehend and control the singlet fission mechanism in these systems, it is of utmost interest to study the underlying excited state dynamics. In this work, thin films of anthradithiophene blended with the efficient singlet fission material pentacene are investigated by means of time‐resolved and temperature‐dependent photoluminescence spectroscopy with a time resolution of a few picoseconds. The analysis of the photoluminescence dynamics points toward efficient funneling of excitons from anthradithiophene via isolated pentacene molecules to agglomerates of pentacene, where eventually singlet fission occurs. The efficient and largely temperature‐independent quenching of the luminescence in anthradithiophene is attributed to a favorable cascade‐like alignment of the energy levels, and it is hypothesized that Förster resonance energy transfer is the main driving mechanism for exciton transport to pentacene agglomerates. The system investigated here can serve as a blueprint for the design of other molecular heterostructures with spatially separated light harvesting and singlet fission regions.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3