Affiliation:
1. Royal Institute of Technology (KTH) Dept. of Fibre and Polymer Technology Stockholm SE‐100 44 Sweden
2. M S Ramaiah Institute of Technology Dept. of Chemical Engineering Bangalore Karnataka 560054 India
3. Linköping University Laboratory of Organic Electronics and Wallenberg Wood Science Center Dept. of Science and Technology Norrköping SE‐601 74 Sweden
Abstract
AbstractPhotonic films based on cellulose nanocrystals (CNCs) are sustainable candidates for sensors, structurally colored radiative cooling, and iridescent coatings. Such CNC‐based films possess a helicoidal nanoarchitecture, which gives selective reflection with the polarization of the incident light. However, due to the hygroscopic nature of CNCs, the structural colored material changes and may be irreversibly damaged at high relative humidity. Thus, moisture protection is essential in such settings. In this work, hygroscopic CNC‐based films are protected with a bioinspired synthetic plant cuticle; a strategy already adopted by real plants. The protective cuticle layers altered the reflected colors to some extent, but more importantly, they significantly reduced the water vapor permeance by more than two orders of magnitude, from 2.1 × 107 (pristine CNC/GLU film) to 12.3 × 104 g µm m−2 day−1 atm−1 (protected CNC/GLU film). This expands significantly the time window of operation for CNC/GLU films at high relative humidity.
Funder
Wallenberg Wood Science Center
Subject
Mechanical Engineering,Mechanics of Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献