Poly(l‐Lactic Acid) Nanofiber‐Based Multilayer Film for the Electrical Stimulation of Nerve Cells

Author:

Jiang Fengying1ORCID,Shan Yizhu23,Tian Junyuan23,Xu Lingling24,Li Chaohai1,Yu Fang1,Cui Xi23,Wang Chengwei23,Li Zhou123ORCID,Ren Kailiang123

Affiliation:

1. Center on Nanoenergy Research School of Physical Science and Technology Guangxi University Nanning 530004 P. R. China

2. Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 100083 P. R. China

3. School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China

4. CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China

Abstract

AbstractPoly(l‐lactic acid) (PLLA) films have excellent piezoelectric properties, but the strong hydrophobicity of the surface makes it difficult for cells to attach there. PLLA nanofibers have good biocompatibility, but the weak piezoelectric coefficient limits the ability of the nanofibers to stimulate cell growth. Therefore, the PLLA piezoelectric film is combined with the PLLA nanofibers to make a multilayer film. In our tests, the piezoelectric output of the multilayer film ≈260 mV. In the biological experiments section, without piezoelectric stimulation, the cell length on the nanofibers is approximately twice that of the cells in the blank control group. The length of cells cultured on piezoelectric‐based stimulated nanofibers is more than twice that of cells cultured on nanofibers without piezoelectric stimulation. Therefore, it is confirmed that under the dual action of nanofiber guidance and piezoelectric stimulation, the growth rate of cells is four times faster than that in ordinary Petri dishes. Intracellular calcium imaging experiments confirmed that the concentration of Ca2+ in electrically stimulated cells is approximately twice that of ordinary cells. It is also confirmed that piezoelectric materials can complete electrical stimulation of cells in indirect contact with cells.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3