Hydrogen Transport Between Layers of Transition Metal‐Dichalcogenides

Author:

Eren Ismail1,An Yun2,Kuc Agnieszka B.34ORCID

Affiliation:

1. Helmholtz‐Zentrum Dresden‐Rossendorf Abteilung Ressourcenökologie Forschungsstelle Leipzig Permoserstr. 15 04318 Leipzig Germany

2. Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials School of Materials Science and Engineering Peking University Beijing 100871 China

3. Helmholtz‐Zentrum Dresden‐Rossendorf Bautzner Landstr. 400 01328 Dresden Germany

4. Center for Advanced Systems Understanding CASUS Untermarkt 20 02826 Görlitz Germany

Abstract

AbstractHydrogen is a crucial source of green energy and is extensively studied for its potential usage in fuel cells. The advent of 2D crystals (2DCs) has taken hydrogen research to new heights, enabling it to tunnel through layers of 2DCs or be transported within voids between the layers, as demonstrated in recent experiments by Geim's group. In this study, it investigates how the composition and stacking of transition‐metal dichalcogenide (TMDC) layers influence the transport and self‐diffusion coefficients (D) of hydrogen atoms using well‐tempered metadynamics (WTMetaD) simulations. The findings show that modifying either the transition metal or the chalcogen atoms significantly affects the free energy barriers (ΔF) and, consequently, the self‐diffusion of hydrogen atoms between the 2DC layers. In the polytype (2H stacking), MoSe2 exhibits the lowest ΔF, while WS2 has the highest, resulting in the largest D for the former system. Additionally, hydrogen atoms inside the (or 3R) polytype encounter more than twice lower energy barriers and, thus, much higher diffusivity compared to those within the most stable stacking. These findings are particularly significant when investigating twisted layers or homo‐ or heterostructures, as different stacking areas may dominate over others, potentially leading to directional transport and interesting materials for ion or atom sieving.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3