An Advanced Healthcare Sensing Platform for Direct Detection of Viral Proteins in Seconds at Femtomolar Concentrations via Aerosol Jet 3D‐Printed Nano and Biomaterials

Author:

Ali Md. Azahar12ORCID,Zhang George Fei3,Hu Chunshan1,Yuan Bin1,Gao Shou‐Jiang3ORCID,Panat Rahul1ORCID

Affiliation:

1. Department of Mechanical Engineering Carnegie Mellon University Pittsburgh PA 15213 USA

2. School of Animal Sciences Virginia Tech Blacksburg VA 24061 USA

3. Cancer Virology Program UPMC Hillman Cancer Center and Department of Microbiology and Molecular Genetics University of Pittsburgh School of Medicine Pittsburgh PA 15213 USA

Abstract

AbstractSensing of viral antigens has become a critical tool in combating infectious diseases. Current sensing techniques have a tradeoff between sensitivity and time of detection; with 10–30 min of detection time at a relatively low sensitivity and 6–12 h of detection at a high (picomolar) sensitivity. In this research, uniquely nanoengineered interfaces are demonstrated on 3D electrodes that enable the detection of spike antigens of SARS‐CoV‐2 and their variants in seconds at femtomolar concentrations with excellent specificity, thus, overcoming this tradeoff. The 3D electrodes, manufactured using a high‐resolution aerosol jet 3D nanoprinter, consist of a microelectrode array of sintered gold nanoparticles coated with graphene and antibodies specific to severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2) spike antigens. An impedance‐based sensing modality is employed to sense several pseudoviruses of SARS‐CoV‐2 variants of concern (VOCs). This device is sensitive to most of the pseudoviruses of SARS‐CoV‐2 VOCs. A high sensitivity of 100 fm, along with a low limit‐of‐detection of 9.2 fm within a test range of 0.1–1000 pm, and a detection time of 43 s are shown. This work illustrates that effective nano‐bioengineering of interfaces can be used to create an ultrafast and ultrasensitive healthcare diagnostic tool for combating emerging infections.

Funder

National Science Foundation

National Institutes of Health

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3