Affiliation:
1. CERN Esplanade des Particules 1 Meyrin 1211 Switzerland
2. Departments of Physics Giuseppe Occhialini University of Milano‐Bicocca Piazza dell'Ateneo Nuovo 1 Milan 20126 Italy
3. Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Břehová 7 Prague 115 19 Czech Republic
4. Institute of Physics Czech Academy of Sciences Cukrovarnická 10 Prague 162 00 Czech Republic
Abstract
AbstractTime‐of‐flight (TOF) technique, traditionally used in high energy physics (HEP) and positron emission tomography (PET), is now being explored for lower energy applications like computed tomography (CT). Regardless of the application, pushing the current boundaries in time resolution calls for novel technologies and materials exhibiting ultra‐fast time response. Semiconductor nanocrystals like cesium lead halide perovskites (CsPbBr3), benefiting from quantum confinement effects, feature ultra‐fast decay and, when combined with a suitable bulk scintillator following a heterostructure concept, can also provide the necessary stopping power. In this work, thin films of CsPbBr3 on top of BGO, LYSO:Ce, and GAGG:Ce,Mg wafers are fabricated to test their impact on the single crystal scintillator time resolution under soft X‐rays excitation (about 10 keV). It is demonstrated that the CsPbBr3 layer significantly improves the overall time resolution in all cases, achieving up to a tenfold improvement with BGO and GAGG:Ce,Mg. Under 511 keV γ‐rays, a proof‐of‐concept of the heterostructure design for TOF‐PET using CsPbBr3 thin film deposited on GAGG:Ce,Mg bulk crystal is successfully tested. Shared events depositing energy in both materials are identified, resulting in more than twofold improved coincidence time resolution: 118 ± 4 ps full‐width‐at‐half‐maximum (FWHM) compared to the 272 ± 8 ps of solely GAGG:Ce,Mg.
Funder
Grantová Agentura České Republiky
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献