Inkjet Printing Bio‐Inspired Electrochromic Pixels

Author:

Sullivan Patrick A.1,Wilson Daniel J.12,Vallon Matthew1,Bower Duncan Q.1,Deravi Leila F.1ORCID

Affiliation:

1. Department of Chemistry and Chemical Biology Northeastern University Boston MA 02115 USA

2. Kostas Research Institute for Homeland Security Northeastern University Burlington MA 01803 USA

Abstract

AbstractIn this report the design, fabrication, and testing of inkjet‐printed electrochromic pixels (ECPs) incorporating the biochrome, xanthommatin (Xa) as programmable display units is described. As a redox sensitive chromophore, Xa is present in some species as a physiological indicator with red (reduced) or yellow (oxidized) colors associated with different behavioral or developmental stages. These features have been recently leveraged in some materials applications, illustrating a bio‐inspired design solution to color‐changing sensors and displays. This paper describes an extension of these applications to print individually addressable ECPs that can be processed in a mild annealing step to introduce localized conductivity on initially nonconductive substrates. When formulated together with a poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) carrier ink, an addition of 0.19 wt% Xa is enough to generate dynamic ECPs which can be batch printed as lateral electrodes on any substrate to serve as both conductors and display units across electrically isolated boundaries. Application of low potentials triggers reversible color changes that span the red/yellow color space and can cycle for days. These results represent an important step towards the incorporation of alternative active materials like Xa to manufacture and scale low‐power, color‐changing pixels and patterns.

Funder

U.S. Department of Defense

Office of Naval Research

National Science Foundation

Army Research Office

Division of Materials Research

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3